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Matrix Inversion (or LUP-Factorization) via the Method of Four

Russians, in Θ(n3/ log n) Time

Gregory V. Bard

Abstract

We present an algorithm for reducing dense matrices over the field of two elements to Row-Echelon Form or
Reduced-Row-Echelon Form, based on the “Method of Four Russians” for matrix multiplication. It is logarith-
mically faster than Gaussian Elimination, and in practice leads to significant performance increase for reasonable
sizes. We further describe how to interface it with Strassen’s Algorithm for large matrices. The algorithm was
known anecdotally in certain cryptographic circles, but we present complexity analysis, implementation details,
experimental timings, and we reduce the probability of an abort to practically zero. The algorithm is the heart of
the “M4RI” library which is available as an open-source tool and which is part of SAGE, and is also suitable for
LUP-factorizations, determining the rank of a matrix, solving linear systems of equations and inverting matrices.

The running time is Θ(mn min(m, n)/ log max(m, n)) for all applications listed except the RREF, and for that
it is Θ(mn min(m, n)/ log m). The speed-up comes from two tricks primarily. The first is using the Gray Code of
length k to enumerate all the vectors in a k-dimensional subspace spanned by a set of k rows, where k ≈ log2 n
is the parameter of the algorithm. The second is that a linear combination of rows need not be computed several
times if it is used several times. Finally, we show experimentally that it is not necessary to be exact in choosing
the best k.

AMS Classification: 15A09, 15A23, 15A33

1 Introduction

In this article, we present a parameterized algorithm for the reduction of a GF(2) matrix into Row-Echelon Form
(REF), or Reduced-Row-Echelon Form (RREF). The primary intended applications are the LUP-factorization of a
GF(2) matrix, solving a system of linear equations over GF(2), inverting a GF(2) matrix, or determining its rank.
We also suggest a scheme for the selection of the algorithm’s parameter, which yields Θ(n3/ log n) time for square
matrices, as compared to Θ(n3) for Gaussian Elimination, and provide experiments to determine the optimal setting
on a typical computer in practice. We further show that the consequences of being slightly off in the selection of the
parameter is a penalty of around 1% in the running time.

Because the running time is Θ(n3/ log n), the reader may be surprised to see so much time spent on this algorithm,
since Strassen’s Algorithm [23] runs in time Θ(n2.807···). Our algorithm is faster than Strassen’s Algorithm for
medium-sized matrices. In particular, our implementation of our algorithm is faster than the implementation of
Strassen’s Algorithm by Magma for matrices of size up to 64,000 rows/columns or 16,000 rows/columns depending
on machine architecture, and so is useful for medium-sized problems (See Section 6.1). Moreover, the algorithm can
be used for the “small chunks” left at the end of the recursion in Strassen’s Algorithm, resulting in a constant factor
speed-up. Both of these issues will be addressed in Appendix E.

The algorithm is an agglomeration of the Method of Four Russians Matrix Multiplication Algorithm [6] [4, Ch. 6],
and Gaussian Elimination. Due to this heritage, we call the algorithm M4RI (Method of Four Russians for Inversion)
to acknowledge the work of [6] and to distinguish it from M4RM (Method of Four Russians for Multiplication), the
matrix-multiplication algorithm which appears in [4, Ch. 6].

The M4RI (pronounced “Mary”) algorithm has been known anecdotally for some time [13], and yet never pub-
lished, so far as we have been able to detect. Here we include detailed complexity analysis; an optimization of the
algorithm’s parameter; a reduction of the probability of an early abort to zero in practice; performance analysis of
the implementation of the algorithm in Sage [3]; and notes on how to integrate the algorithm with Strassen-like
algorithms.
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1.1 Probability of an Abort

The concept of an abort in GF(2) linear algebra is not new. Early aborts can occur in both M4RI and Strassen’s
Matrix Inversion Formula [23] (given later as Equation 1), when a submatrix is not of full-rank yet is expected to
be. Unfortunately, in GF(2) this happens rather frequently. To be brief, it can be proven [7, Ch. A.3.3] that a
real-valued matrix filled with independent and identically distributed random variables, with continuous probability
distribution function, will be singular with probability zero, which is why the problem “never happens” over R. In
contrast, a GF(2) matrix filled by independent fair coins will be singular with probability ≈ 71.1 . . .% (See [21], [25,
Ch. 16], [9] or [7, Ch. A.3.3] for a proof). The proof parallels that of Lemma 1. This problem for Strassen’s Matrix
Inversion Formula was surmounted by [11] and later improved by [18].

Using the methods in this article, the probability of an early abort for our algorithm can be made 1−1/(n log2 n)
for an n× n matrix. In practice, aborts did not ever occur for M4RI except when extremely unwise choices for the
algorithm’s parameter were tested, in order to complete tables. See Table 2 for details. Furthermore, in Appendix A
we give an alternative strategy for Stage One which never aborts, but which in worse case gives Θ(n3) instead of
Θ(n3 log n) running time. However, for all but the most pathological inputs, it will have running time Θ(n3/ log n)
and it cannot abort. See Appendix A.1 for details.

1.2 Density Assumptions

This algorithm was designed for dense random matrices, which in GF(2) means that the matrix was filled by inde-
pendent fair coins. If the matrix is sparse then algorithms such as the Block Wiedemann Algorithm [12] or Lanczos’s
Algorithm [20] will likely be faster. This “fair coin assumption” is important only in determining the probability
of an abort, but our experiments show aborts do not occur in practice even with sparse matrices. In any case,
after a few iterations of normal Gaussian Elimination (but not Wiedemann or Lanczos), a sparse matrix becomes
effectively dense, and then one can proceed with what is given here. In algebraic cryptanalysis, sometimes the system
of equations being solved will be dense (e.g. QUAD [8]) or sparse, for low gate-count ciphers like SEA [22]. In many
ciphers, such as HB [17], we have a strong reason to believe that the coefficients will behave like random coins, see
[26].

If the distribution is not independent, the author conjectures that the probability of an abort will remain very
low except for possibly particularly strange distributions. For the performance of the system on a matrix very far
from having the fair coin distribution, see http://m4ri.sagemath.org/ under “performance.”

1.3 Software Availability

The author’s implementation of the algorithm has been released under the GPL (GNU General Public License) and
is available for download at http://m4ri.sagemath.org/ . However, since the library was first launched, several
programmers have contributed to the project, and the current library is highly optimized. Furthermore, it has been
enlarged to cover virtually every aspect of dense linear algebra. Through the course of several clever optimizations,
(similar to those done for matrix multiplication in [5]), the speed is currently 20 times faster than the author’s original
implementation, and only a factor of 2 or 3 can be accounted for by the progress in microprocessors since when most
of the experiments in this paper were originally performed. Naturally, we provide some newer, up-to-date timings as
well (see Table 5). The library is used for any dense matrix over GF(2) in SAGE [3], but also in the GF(2) Gröbner
Bases tool PolyBori [10], and is in the process of becoming an optional package in the Debian distribution of Linux.

2 Gray Codes

The primary mechanism for the log2 n speed-up is the Gray Code [16]. A Gray Code of n bits is a sequence of all
2n-bit strings of length n, such that the following properties hold: each string appears exactly once; each string
differs in exactly one spot (one bit) from the one before it (and therefore, likewise, the one after it); the initial string
is the all-zero string. This sequencing enables one to enumerate all the vectors in an n-dimensional subspace of a
GF(2) vector space in time equal to 2n − 1 vector additions, not the Θ(n2n) vector additions that would otherwise
be expected, as we will now show.

Consider an n-dimensional subspace S of GF(2)m (obviously m ≥ n), with vectors b1, b2, . . . , bn forming a basis.
There are 2n vectors in S, and each can be written uniquely as a linear combination of the bi vectors. The number of
non-zero coefficients in that unique linear combination is the weight of that vector with respect to that basis. There
are

(
n
w

)
vectors of weight exactly w in S, for 0 ≤ w ≤ n. Thus the average weight is n/2 and the number of vector

additions required to compute it näıvely is n/2− 1, or 2n(n/2− 1)m field operations in total.
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Instead, starting with the m-dimensional all-zero vector and the first codeword, we will iterate through the Gray
Code. When iterating from the ith codeword to the i + 1th, only one bit changes, call it j. We will then add bj to
the current codeword. Thus, with one vector addition per codeword, we enumerate the entire subspace. This means
only (2n − 1)m field operations are needed. This is essentially n/2 times faster than the näıve method.

Note: In the Sage implementation of this algorithm, the Gray Codes are computed only once and stored perma-
nently, for all sizes 1 to 16, and this computation takes much less than 1 second. (For the method of generating the
codewords, see Knuth’s Art of Computer Programming [19, Vol 4, Fascicle 2a], or Appendix D.1).

3 The Algorithm

3.1 Overview

At each iteration, we will process k columns, where k is the parameter of the algorithm. There will be dmin(m,n− 1)/ke
of iterations, each consisting of the following three steps.

First, we will do a Gaussian Elimination on only 3k rows of the matrix. Then we will anticipate that the first k
columns of the elimination did not fail to find a pivot in those 3k rows. If this assumption is false, we abort, but if
it is true, then the first k rows form a basis for a k-dimensional subspace. The abort is an artifact of the complexity
analysis, but essentially never occurs as shown below; furthermore, we present, in Appendix A an alternative for
Gaussian Elimination which does not abort. Second, we will use the Gray Code to rapidly enumerate all vectors in
that subspace, as explained above. Third, we will use these enumerated vectors as patterns as explained below, and
add them to the remaining rows to create (for RREF) k columns of all zeros, except on the main diagonal. In the
case for REF, we do not touch rows which are above the main diagonal in the left-most column of the columns being
processed.

3.2 Pseudocode

Below, i represents the number of rows and columns processed so far, and k is the algorithm’s parameter. The matrix
A is to be reduced to REF, and has dimensions m× n.

1. i← 0

2. While (i ≤ m) AND (i ≤ n− 1) do

• (Stage 1) Perform a Gaussian Elimination on rows i + 1 . . . i + 3k, to render those 3k rows in RREF.

• With high probability, these 3k rows had pivots for the k active columns, and thus the first k rows among
the 3k now form a basis for a k-dimensional subspace W of GF(2)n. If not, abort.

• (Stage 2) Use a Gray Code of length k to enumerate the 2k − 1 non-zero vectors in the subspace W
spanned by the first k rows.

• (Stage 3) For each row r ∈ {i + 3k + 1, i + 3k + 2, . . . ,m} do

(a) Consider Ar,i+1, Ar,i+2, . . . , Ar,i+k as a k-bit integer z.
(b) Take the vector, from W , that is “associated with z” (defined below), and add it to row r.

• i← i + k

3. If i 6= min(m,n− 1) then finish with Gaussian Elimination. (Clean-up Stage).

Note to the Referee:Note to the referee: The author could not choose between two formats for the pseudocode.
Therefore this algorithm is formatted one way, and the one on Page 8, is formatted in the other. Tell me which
you think is better, and I will format both that way, or feel free to suggest a hybrid of the formats, or a new format
entirely.

During Stage 1 (the Gaussian Elimination) if a column has no pivot, among the 3k rows, then this will result in
all zeros in at least one of the k active columns. In terms of the theory of the algorithm, we abort. We will show
that this happens very rarely. However, in practice, one does not abort, but one simply ignores the column and
continues. The abort is only an artifact of modeling the complexity in theory. Furthermore, in Appendix A, we show
an alternative Stage 1 which, in practice, will result in the algorithm never aborting if the input is non-singular.
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Instead, if the Stage 1 Gaussian Elimination did find pivots for the first k columns, then there is a k× k identity
matrix located in Ai+1,i+1, . . . , Ai+k,i+k. This, in turn, guarantees that those k rows are linearly independent.

The condition required between Stages 1 and 2 can be detected by looking for a zero on the main diagonal. A
zero will only appear there if the 3k rows used in Stage 1 failed to provide a pivot for the first k columns of the
elimination. This will occur if and only if the intersection of the 3k rows and the k active columns, taken as a 3k× k
matrix, is not full-rank. We address the probability of that event in Lemma 1.

During Stage 3 the term “associated with z” is used. Each vector in the subspace is generated by a codeword in
the Gray Code. The codeword can be read as an integer, and that subspace vector is associated with that integer.
Always it will be the case that the subspace vector associated with any particular integer is enumerated at the
same spot in the list of enumerated vectors. Therefore, this entire mapping can be performed by a lookup in a
pre-computed array. Thus the code using

000, 001, 011, 010, 110, 111, 101, 100

would result in

(0→ w0 = 0), (1→ w1 = b3), (2→ w3 = b2), (3→ w2 = b2 + b3),
(4→ w7 = b1), (5→ w6 = b1 + b3), (6→ w4 = b1 + b2), (7→ w5 = b1 + b2 + b3)

Adding the associated vector forces all the entries in the k columns currently being worked upon to become zero,
since we operate in GF(2).

Note: All Gaussian Elimination is performed with row swaps permitted, but not column swaps (sometimes called
“partial pivoting”), as is standard.

4 Complexity Calculation

Here we calculate the cost of the jth iteration of the algorithm, given an m× n matrix and parameter k.
A Gaussian Elimination on an a× b rectangular matrix takes Θ(abmin(a, b)) field operations [24]. Thus, in Stage

1, the 3k × n Gaussian Elimination requires Θ(k2n) field operations, provided 3k < n. Since we will later choose
k ≈ log2 n, this inequality will be true for any reasonable n.

In Stage 2, using the Gray Code subspace enumeration, requires 2k − 1 vector-additions. Each vector is of length
n, so this is (2k − 1)n field operations, or Θ(2kn).

Finally, in Stage 3, max(m− (j − 1)k − 3k, 0) rows will be processed. Only a few memory reads are required to
figure out which Gray Code Table entry is associated with the k bits in question, and so the vector-addition is the
important step. The vector is of length n again, and so this is n max(m− (j−1)k−3k, 0) field operations, or Θ(mn).

Of course, in all three Stages, we can ignore all columns to the left of those currently being worked upon. A more
careful complexity analysis taking this into account, and retaining the coefficients rather than using big-Θ notation
can be found in [7, Ch 5.6].

Thus, all three stages of the iteration together, have cost Θ(n(2k+m)). Allowing j to run from 1 to dmin(m/k, (n− 1)/k)e,
we get a total of Θ(n(2k + m) min(m,n)/k) operations.

The Clean-Up Stage will be a Gaussian Elimination that is very narrow, or very short, or both, if k does not
divide min(m,n − 1). The value i − min(m,n − 1) = c is the number of rows/columns that need to be processed
at the end, and 0 ≤ c < k. Thus O(k2 max(m,n − 1)) field operations will be used for clean-up, which is rather
negligible.

4.1 Choosing the Parameter

Furthermore, if k = log2 m this comes to Θ(nm min(m,n)/ log m), or a log2 m speed-up over Gaussian Elimination.
In practice, k will be determined experimentally. These experiments are easy to perform on any particular machine.
However, experiment #3 shows that it is not too important to get k exactly right (See Section 6).

If m� n then working with AT would be better if it is possible. The running time is Θ(mn min(m,n)/ log max(m,n))
in that case, see Appendix C.3 for details.
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4.2 Probability of Abort

The only possibility of an abort is if the first stage fails to find a pivot for one or more of the first k columns.
This abort will occur if and only if the 3k× k submatrix, defined by the intersection of the k active columns and

the 3k rows operated upon in Stage 1, is singular. Using Lemma 1, we discover that a 3k×k matrix of fair coins will
be non-singular with probability 1 − 2−2k. With k = log2 m this comes to ≈ 1 −m−2. Thus even if m = 1000, the
probability is quite low that one has a singular matrix. Of course, if 2k were used in place of 3k then the probability
comes to ≈ 1−m which, we will show below, causes problems.

In theory, it makes sense to use 3k or even 4k because this Stage 1 is invisible in the final complexity analysis.
In practice, since the rank of the 3k rows is likely to be between 3k and 3k − 8 (See Table 5.3 in [7, Ch 5.4]), then
the next two iterations will have very fast Stage 1s, since most of the work of that stage is already performed.

Note, the variant method of “Stage 1” described in Appendix A and called “Sideways Gaussian Elimination”
uses exactly as many rows as required.

Of course if m � n then working with AT rather than A would improve the lowering of the probability of an
abort, resulting in 1−max(m,n)−2 for any particular iteration. See Appendix C.3 on the “transpose” operation.

Of course, there are dmin(m,n− 1)/ke iterations, so the net probability of an abort can be calculated using a
probabilistic argument. For simplicity, we will assume m = n. In that case

(1− n−2)(n/k) ≈ 1− (n/k)(n−2) = 1− 1/nk = 1− 1/(n log2 n)

and one can see why 2k is unacceptable compared to 3k, because then the total probability of an abort would be
1− 1/ log2 n, which is far too high.

5 Adaptations

5.1 Inverting Matrices

In Stage 3, instead of only doing rows r such that i+3k +1 ≤ r ≤ m one can also include the rows 1 ≤ r ≤ i as well.
This will result in a matrix in RREF rather than REF. Since the RREF of [A|I], the matrix A adjoined with the
identity matrix of the correct size, is [I|A−1], provided A is non-singular and square, this can be used to find A−1.

5.2 LUP-Factorization of Matrices

To perform the LUP-factorization one simply performs the reduction to REF. There must be a matrix, initially the
identity matrix of size m × m, that will become L. The REF of A will be U . The permutation matrix P is also
initially an identity matrix, but of size n× n.

Whenever rows a and b are swapped in Stage 1, or in the clean-up stage, swap rows a and b in P . No other action
is required to construct P .

Suppose the “active columns” are i + 1, i + 2, . . . , i + k and in Stage 3, while working on row z, we observe
Az,i+1, Az,i+2, . . . , Az,i+k in the active columns. In addition to adding the appropriate Table-Row to row z, we will
do the following to L. For each j ∈ {i + 1, i + 2, . . . , i + k}, we set Ljz = −Azj . (The negation is redundant for
GF(2) but we include it for use over other fields, see Appendix D).

Once the LUP-factorization is produced, then Strassen’s Matrix Inversion Formula [23]

A =
[

B C
D E

]
⇒ A−1 =

[
B−1 + B−1CS−1DB−1 −B−1CS−1

−S−1DB−1 S−1

]
(1)

where S = D−1−E−1CB−1, the Schurr Complement of A with respect to E. can be used to calculate the inverse
as well, because L, U , and P will all be non-singular, along with all submatrices inverted by the formula being applied
recursively. This follows from the fact that the main diagonal will be all ones for both L and U , and so they are
both invertible, as are all permutation matrices. There are also faster methods for converting an LUP-factorization
into a matrix inverse [2].

6 Experimental Results

In the first experiment, with results listed in Table 1, all choices of k from 1 to 16 were attempted. The optimal
choice was recorded, with running times within 1% recorded as a tie. The running times are given, including the
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running time of a highly optimized Gaussian Elimination written using the same low-level functions as the M4RI’s
library uses, including the use of 64-bit operands as described in Appendix C. One can see that the speed-up is
appreciable at even these low sizes, but also that the ratio is given after dividing by log2 n, and is still increasing.
This means that the speed-up, for these sizes, is slightly better than log2 n.

The next experiment was to select an optimal k for various larger matrices. Unfortunately, compilation under the
highest setting was extremely slow at that time (several hours), because of the large size of the pre-computed Gray
Code tables. We were therefore compelled to engage in the unusual practice of using settings lower than the best
possible. This is no longer a problem, however. The optimization setting of “no optimization” in gcc was selected
to allow for rapid recompilation between changes of k but also to exaggerate the differences between k values. The
results are given in Table 2. But then, one can measure the effects of choosing a non-optimal k. This is given in
Table 3, where for example +2 in the left column means selecting a k that is two higher than the optimal choice.
One can see that the penalty of being off by 1 is very small, in either direction. This means it is not necessary to be
too precise in developing a formula for the optimal k.

Finally, the Experiment 4 is just the same as Experiment 3, but with all the compiler optimization settings turned
on, and working with larger matrices. The data is given in Table 4. This also confirms that the phenomenon noted
in Experiment 3 was not an artifact of turning the compiler optimizations off. Not all possible k were tried, but only
those near to the optimal. The ratio of the running time of M4RI to Gaussian Elimination is given, and again that
ratio appears to move as log2 n times some constant.

Based on this, it appears that the optimal is k = (log2 n)− 2.5, for the computer used in the experiments, which
was a 1 GHz PC, with 1 GB of RAM, running UNIX via Cygwin, through Microsoft Windows.

6.1 Recent Experiments: Comparison to Magma

These experiments represent all of the optimizations added to this algorithm by the several programmers listed in
the Acknowledgements. Most of these are cache-related. As you can see, the algorithm is quite fast, now inverting
a 32, 000× 32, 000 matrix (with roughly 1 billion entries) with running time under 2 minutes.

Here Computer I signifies, a Macbook Pro 2nd Generation laptop, running 64-bit Debian/GNU Linux, with a
2.33Ghz Intel Core2Duo processor; Computer II signifies a 2.6Ghz Opteron (VMWare Virtualised) running 64-bit
Debian/GNU Linux; Computer III signifies a 1.6Ghz Itanium Processor.

The cross-over with Magmaappears to be slightly below dimension 64, 000 for the Macbook laptop, and some-
where between 16, 384 and 20, 000 for the Opteron. But for the Itanium, the cross-over appears to be slightly
above dimension 64, 000. This makes sense, as it is known that Magmahas custom assembly-language code for the
Opteron architecture. Thus the performance is slightly better there, whereas in our library there are no custom
assembly-language changes.

6.2 To Find k On a Particular Machine

For particular fixed sizes, try all k within 4 of k = (log2 n)− 2.5 and then choose the best. If one is concerned with
matrices of any size within a broad interval, a least-squares fit of the form (a log2 n) + b should be trivial to carry
out, and sufficiently accurate. For example, on sage.math.washington.edu it appears that 0.75 log2 n was optimal.
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A Modified Gaussian Elimination

The method below performs a type of Gaussian Elimination, when one wants k rows of a large invertible matrix to
be in RREF, with no rows of zeros, but yet one wants to work on as few rows as possible. This method only will
process k rows, and will only abort if there is no possible pivot in some column in the entire matrix (i.e. the situation
is hopeless). Therefore, in practice, we always use what is in this appendix.

Upon termination, there will be k rows at the top in RREF, and the remaining rows will follow underneath,
untouched but possibly reordered. For use in M4RI, the addresses of the rows and columns must be incremented by
an offset equal to k times the number of fully completed iterations.

This is meant to replace Stage 1 in the algorithm in practice, to make the probability of an abort to be zero
unless the matrix was actually singular. However, the theoretical complexity analysis is ruined by this change, as
Stage 1 is not of negligible duration in the worst case. If the input matrix is singular, the correct RREF or REF is
computed nonetheless.

The matrix A has m rows and n columns.

function SidewaysGaussian(matrix A, integer k) do begin
For 1 ≤ j ≤ k do begin

//j is the ‘‘active’’ column
found ← 0
i← j
While (i ≤ m) AND (found = 0) do begin

//i is the ‘‘candidate’’ row
For 1 ≤ z ≤ j − 1 do ‡

//clear the ones in the left of the new row
If Ai,z 6= 0 then

Add row z to row i and store in row i
If Ai,j 6= 0 then begin†

found ← 1
Swap row i and row j
For 1 ≤ z ≤ j − 1 do

//clear the new column in all the old rows.
If Az,j 6= 0 then

Add row j to row z and store in row z.
end

end
If found= 0 then abort in theory, or go to the next column in practice.

end
return A

end
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Note to the Referee:The author could not choose between two formats for the pseudocode. Therefore this
algorithm is formatted one way, and the one on Page 3, is formatted in the other. Tell me which you think is better,
and I will format both that way, or feel free to suggest a hybrid of the formats, or a new format entirely.

The method here is more efficient than using 3k rows as explained earlier, however, the big-Oh running-time
analysis is ruined because Stage 1 can become non-negligible in the worse case. This will be explored in the following
appendix. However, in practice, this method is faster, because only precisely as many rows as are needed are
processed, not 3k or k plus a small integer. Moreover, the true advantage of this option is that it will never abort
unless there was no pivot column at all.

A.1 Complexity Model

In short, the complexity argument we are making is very similar to ZPP. In the complexity class ZPP a randomized
algorithm is never permitted to be wrong, but has expected running time that is polynomial time [15]. The worse-case
running time might be infinite. These are sometimes called “Polynomial-Time Las Vegas Algorithms.”

The classical example of this a decision problem in RP ∩ Co-RP. Because it is in RP there is an algorithm that
is never wrong if the answer is NO, but is only correct with probability ≥ 1/2 if the answer is YES, (e.g. using
Miller-Rabin to test primality). Because it is in Co-RP there is an algorithm that is never wrong if the answer is
YES, but is only correct with probability ≥ 1/2 if the answer is NO. This gives rise to the following program, which is
never wrong. One can call the first algorithm. If the answer is NO, then this is certainly correct. If the answer is YES,
then call the second algorithm. If this too is YES, then that too is certainly correct. However, if the second output
is NO, then repeat from the beginning. The expected running-time is clearly finite, but for any running time, there
is a positive probability that the program will run that length of time.

Here, we propose an algorithm which has two strategies for Stage One. If one uses “Sideways Gaussian Elimina-
tion”, given in Appendix A, then the running time is expected Θ(n/ log n) and will be that with very high probability.
However, for certain very strange inputs, it could be Θ(n3). If one uses the traditional Stage One, which is an or-
dinary Gaussian Elimination on a particular sub-matrix, then the running time is always Θ(n/ log n), but it might
abort. The probability of aborting was a problem in practice, but now with what is contained here, it will never
occur in practice. In theory, it is nice, because the running time is never Θ(n3). Furthermore, if an abort does occur
in practice, a random permutation of the matrix can be taken, and the algorithm restarted from the beginning.

Thus one could define ZNLNPP, a complexity class where the expected running time is Θ(n log n) but it might be
longer, and NLNP, where the running time is always Θ(n log n), but with a probability of an abort.

A.2 Using 3k Rows versus Sideways Gaussian Elimination

The algorithm given in Appendix A, “Sideways Gaussian Elimination” has the property that it will not fail to find
a pivot unless the original matrix is singular— which would imply that no pivot exists and therefore the failure to
find it is inevitable. Even then one can simply ignore the column and keep going to find the RREF.

One would think that since the alternative method—Sideways Gaussian Elimination, is better than ordinary
Gaussian Elimination for 3k rows in practice, with very rare exceptions, that in theory this would be the case too.
Furthermore, this is tempting because the fair-coin assumption could be dropped, and there would be no worries of
aborts. Both Martin Albrecht and Clément Pernet have independently conjectured this to the author.

Consider the algorithm given for “Sideways Gaussian Elimination.” But note the complexity of the innermost
loop involves several row additions—in fact, a number of row additions equal to the weight of column i in rows
1, 2, . . . , j− 1 and the weight of the new row j in columns 1, 2, . . . , j− 1. This is expected to be j− 1, and is at worse
2j − 2. Thus Θ(jn) operations are anticipated.

The outer loop will run a number of times equal to the number of linearly independent rows that one wishes to
generate, namely k times. The inner loop causes much trouble.

The purpose of the inner loop is to find a pivot element for the active column, j. But the test performed at step
† cannot be performed until the loop at ‡ is executed. In reality, we expect the inner loop to run very few times.
But in worse case, it might run several times.

At best, each time we begin the inner loop, we discover that the first available row meets the requisite requirement
Aij 6= 0. But it is also possible that only the last row found will be the pivot row. For this example, let j−1, j, j+1, j+2
be the last three columns of a set of k columns being worked on in one Method of Four Russians elimination’s Stage
1.

One would argue that if one must search all the rows in stage j, that the columns 1, 2, . . . , j− 1 would all be now
zeroed. Furthermore, in all but the pivot row, column j would be zero as well (otherwise an earlier column would
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be selected as the pivot). Thus in terms of field operations, column j + 1’s search would be very fast.
Thus, having the pivot in the first row or in the last row can both be a good outcome. Now consider that in

column j it is the last row possible which is the pivot, in j +1 the first row possible, and in j−2 the last row possible.
For both column j and column j − 2, row additions must be performed in the loop marked with a double dagger.

Now let us generalize. Imagine for the odd numbered iterations, the last row chosen will be the pivot row, and for
even numbered iterations, the first row chosen. In processing column x for Stage 1, if x > 1 is odd, then m− x + 1
rows will have to be checked. This will require a row addition in each case. Thus (m−x+1)(n−x) field operations.
Since this will occur for x ∈ {1, 3, 5, . . . , n} then

x=min(n,m)∑
x=1

(m− x + 1)(n− x)

field operations are required, which becomes when m ≈ n equal to Θ(m3). In other words, Stage 1 alone becomes
longer than the entire algorithm.

Summary When a matrix is generated by fair coins, there is a positive probability of getting any particular matrix,
including the all-zero matrix. Furthermore, if the running time is n3 for even one of these input matrices, we are
compelled to designate the algorithm as cubic-time. Clearly, using the “Sideways Gaussian Elimination”, if the pivot
were found in the last possible row, or even half way down, half the time and quickly the other half of the time, then
we have m row additions to arrive at this conclusion, each of length a fraction of n (in fact that fraction is the ratio
of the number processed columns to the number of columns remaining), and we do this min(m,n) times. If m = n,
this is cubic time.

Instead, the algorithm given in the body of the paper would abort under these very difficult inputs. Therefore,
firstly, there is never a case where the algorithm given in the body of the paper requires n3 time, and secondly, the
abort is repairable. But upon the abort, one could randomly permute the matrix and repeat. Under the random
permutation, this outcome would be very rare given that the input matrix were similar. And so it is possible to
calculate the number of trials expected, and it becomes clear that even 3 trials would be very unusual. And surely
n3/ log n times 2 or 3 is less than n3.

This is basically no different than getting f ′(x) = 0 during Newton’s Method. For a continuous non-constant
function, the probability is zero for a uniformly distributed initial guess in some neighborhood, and so one can simply
restart in the event of an abort.

The author does not believe this scenario to be typical or realistic, but it does explain why “Sideways Gaussian
Elimination” is not a panacea. For the theoretical running times, we require the 3k rows approach, but in practice,
we strongly recommend the “Sideways Gaussian Elimination” method.

B A Useful Lemma

Note to the Referee:This particular appendix is included for the referee’s convenience, but should probably be
deleted.

Surely this is well-known but it is useful here. The same argument can be used to calculate that an n×n matrix
filled with fair coins is non-singular with probability 0.28879 · · ·, as n→∞.

Lemma 1 A random GF(2) matrix of dimension 3k×k, filled by fair coins, has full rank with probability ≈ 1−2−2k.

Proof: Consider the columns of the matrix as vectors. One can attempt to count the number of possible full
rank matrices. The first vector can be any one of 23k − 1 length 3k non-zero vectors. The second one can be any
non-zero vector distinct from the first, or 23k − 2 choices. The third one can be any non-zero vector not equal to
the first, the second, or their sum, or 23k − 4 choices. The ith vector can be any vector not in the space spanned by
the previous i − 1 vectors (which are linearly independent by construction). Thus 23k − 2i−1 choices are available.
Therefore, the probability of any k vectors of length 3k being linearly independent is

∏i=k
i=1

(
23k − 2i−1

)
(23k)k

=
i=k∏
i=1

(
1− 2i−12−3k

)
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≈ 1−
i=k∑
i=1

2i−12−3k

≈ 1− 2−3k(2k − 1) ≈ 1− 2−2k

and this is the desired result.

C Implementation Details

Note to the Referee:I would prefer to keep this appendix but if we need to get the page-count down, as the
instructions for authors says 8 pages, I would delete this section. The following small tricks helped improve the
implementation of the algorithm while writing the software library.

C.1 Bulk Logical Operations

Some microprocessors have operations which can do 32-bit, 64-bit or even 128-bit logical-AND and logical-XOR.
This allows one to add 32, 64, or 128, field elements in a single instruction. In order to take advantage of this, the
main method of storing a row in our library is to store the entries for the first 64 columns in the first memory word,
the second 64 columns in the second memory word, and so forth.

To read a single bit, take a logical-AND with the word containing this bit, with a mask consisting of all zeroes,
and a one in the position of the bit of interest. This logical-AND will be non-zero if and only if the original bit of
interest were zero.

Therefore, reading a single bit becomes slightly slower, but an add becomes roughly 64× faster, which is certainly
a net gain, since Stage 2 and Stage 3 are mostly vector additions. Therefore, we simply use this technique all the
time.

C.2 Fixed Addressing Does Not Help

With the above in mind, it might make sense to choose k = 8 or k = 16 to simplify the addressing, since one can
easily read bytes or 16-bit words. In these cases, the columns that will generate the codewords will all come from a
single read instruction, and not several read instructions.

For example, with k = 11, for the third iteration, columns 23, . . . , 33 would be the source of the codewords, and
would stretch across three bytes (bits 16–23, bits 24–31, and bits 32–39).

It turns out that this is all moot, because reading the data for the codewords is a very minor operation, whereas
k has a significant influence on the running time of the algorithm. Therefore, going with fixed addressing, while it
lowered the complexity of the code, was not useful in improving the running time.

C.3 Operating on AT

In computer algebra, frequently we work with AT rather than with A. For example in matrix multiplication via
the näıve algorithm, it makes sense to transpose the right-hand matrix, which is a quadratic and therefore cheap
operation, so that the cubicly many memory reads will be row-wise in all cases, leading to spatial locality.

In our algorithm, the running time is Θ(nm min(m,n)/ log m), and so if m� n we would rather have Θ(nm min(m,n)/ log n).
This will impact each application as follows.

For inverting a matrix, this is of no use, as RREF
(
[A|I]T

)
= [I|0]T . For LUP factorization, if AT = LUP then

A = PT LT UT . However, if one desires an inverse, one can perform the LUP factorization, then use Strassen’s Matrix
Inversion Formula [23] (here Equation 1, along with Strassen’s Algorithm for Matrix Multiplication and The Method
of Four Russians for Matrix Multiplication) to calculate the inverse after rapidly inverting L,U, P , see Subsection 5.2.

To solve Ax = b, one could perform that LUP-factorization of AT , and then find PT z = b, followed by LT y = z
and UT x = y. The last three “back-solves” are quadratic or better and therefore cheap operations. For finding the
rank, note that the rank of A is the rank of AT as well.

Thus in each case, we can use the transpose and run in time equivalent to Θ(nm min(m,n)/ log max(m,n)).
However, in fairness, some applications such as F4 Gröbner Bases calculations simply require the RREF of A, and
taking the transpose does not help, for reasons similar to the case of A−1 above.
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C.4 Cache-Friendly Operations

It turns out that performance is greatly affected if the Gray Code tables can fit in the L2 cache or not. This leads
to an optimization whereby several Gray Code tables are used simultaneously, but with smaller values of k. This is
described in [5] for matrix multiplication using the original Method of Four Russians Matrix Multiplication Algorithm
given in [4].

D Working in GF(q), with 3 ≤ q ≤ 7

The algorithm will proceed identically for GF(q) as for GF(2), but one has to use a Gray Code over GF(q). The
Gray Code will still enumerate all the vectors in the subspace generated by the k rows. The only difference is that
we must subtract and not add in Stage 3. The running time will have the base of the logarithm be equal to the size
of the field.

Therefore, doing this over even GF(7) might be non-productive, because log7 n is unlikely to be large enough
to overcome the overhead of the algorithm. However, we did not attempt an implementation over fields other than
GF(2). We imagine that over GF(3) the algorithm would be an improvement, but we know of no applications.

D.1 Generating the Gray Code Itself

The generation of a Gray Code of size ` over a finite alphabet of size q, given that of size ` − 1 is done as follows:
list the Gray Code of size ` − 1 forwards, with a prefix of the first alphabet character attached to each codeword.
Then list the Gray Code of size ` − 1 backwards, with a prefix of the second alphabet character attached to each
codeword. Next, list the Gray Code of size `− 1 forwards, with a prefix of the third alphabet character attached to
each codeword. This is repeated until all alphabet characters have been prefixed to a codeword.

This can be done recursively to generate a Gray Code of any length, because the Gray Code of length 1 is simply
the alphabet itself, starting with 0.

It is obvious that this is a Gray Code of length ` because of three facts. First, there are q times as many words
in the new code as the Gray Code of length `− 1, which makes for the correct size. Second, there are no duplicate
words in the new Gray Code, because each “pass” over the alphabet has a distinct prefix, and the Gray Code of
length `− 1 has no duplicates. Third, each codeword differs in exactly one spot from the word before it. This is true
if the two codewords come from the same `− 1 word pass, because the Gray Code of length `− 1 has that property.
This is true if the two codewords come from distinct passes, because they are either both the first codeword or both
the last codeword from the code of length `− 1, but with distinct prefixes.

E Comparison to and Combining with Strassen’s Methods

Because the running time is Θ(n3/ log n), the reader may be surprised to see so much time spent on an algorithm
of this complexity, since Strassen’s Algorithm runs in time Θ(n2.807...). Recall that Strassen’s paper [23] contained
three algorithms: one for multiplication of matrices, one for the inversion of non-singular matrices, and one for the
determinant. We call the first Strassen’s Matrix Multiplication Algorithm (SMMA) and the second Strassen’s Matrix
Inversion Formula (SMIF), here labeled as Equation 1.

As during SMMA, during SMIF the matrix is cut into quadrants repeatedly. Yet if certain submatrices are not
invertible, the algorithm must abort, as the inverses of those submatrices are used in the formula. (See [7, Ch 5.8]
for details). This was resolved by Bunch and Hopcroft [11], and further by Ibara, Moran, and Hui (IMH) [18]. These
algorithms are more complex and therefore entail a very large coefficient. Note, the IMH algorithm is sometimes
called the LQUP algorithm.

While Magma [1] is closed source, the running times of inversions of GF(2) matrices of various size in Magma,
when plotted in a log-log graph, demonstrate an eventual slope of 2.807 . . ., thus indicating that Strassen’s fam-
ily of algorithms is being used. Our algorithm is faster than both Gaussian Elimination and the combination of
SMIF/SMMA used by Magma for n × n matrices of intermediate size (100 < n < 64000) on certain architectures,
see Section 6.1. For the latest running times, on several architectures, including newer versions of Magma, see
http://m4ri.sagemath.org/.

Because a matrix of size 64, 000× 64, 000 has roughly 4.1 billion entries, we were not able to test larger sizes.
For matrices of larger dimension, using IMH will allow the LUP factorization of A to be done by multiplies and

inverses of non-singular matrices. Recall that Strassen’s class of algorithms, Bunch-Hopcroft, and IMH each work by
repeatedly cutting the matrix into pieces and then performing a recursive call on each submatrix. While this can be

12



Gregory V. Bard

done until single element sub-matrices are reached, that would be inefficient. Instead, one cuts until the sub-matrices
are smaller than some n0, at which time they are multiplied, inverted, or factored by “other techniques,” and the
final answer re-assembled. The M4RI algorithm can become that “other technique”, instead of Gaussian Elimination
or some variant of it.

While this only provides a constant speed-up, the speed-up should be roughly 0.23 log2 n0 where n0 is the cross-
over point, and so could be as large as 3.22–3.68 since 16, 000 ≤ n0 ≤ 64, 000 on the architectures tested.

Currently, such operations are planned for Sage but are not implemented yet, as most users rarely enter matrices
of size > 64, 000 rows and columns.

F Historical Notes

Note to the Referee:This will almost certainly be deleted, only to be retained in “the full version” of the paper
on my webpage, along with any data tables the referee wishes to remove. Unless, of course, the referee wants this
appendix to remain.

The paper [6] refers to its algorithm as Kronrod’s Algorithm, after one of the authors, a nomenclature not
currently in use but advocated by Dan Bernstein [14], and this author. The origin of the alternative name “Method
of 4 Russians” is obscure, but [4] says that it is named for the “cardinality and nationality of its inventors.” Later,
it came to be known that not all the authors are Russians.

Kronrod’s algorithm finds one step of the transitive closure of a graph. This is equivalent to squaring a matrix
over the boolean semiring. However, it is clear how to convert it to multiplication, and the M4RM algorithm for
matrix multiplication (for the semiring) appeared in [4, Ch. 6]. The extension to GF(2) is not difficult, and is found
in [7, Ch. 5]. Implementation details are given in [5].

Given that M4RI is difficult to say, Clément Pernet suggested the name “Mary”, equivocating the 4 with an “A”.
The Gray Code [16] is often thought to refer to a color midway between white and black, but actually refers to

Frank Gray, who patented a vacuum tube assembly to generate the code, which he believed must have been known
for quite some time.
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Size 128 256 362 512 724 1020 1448 2048

Best k 5 or 6 6 7 7 or 8 8 8 or 9 9 9

M4RI 0.09571 0.650 1.68 4.276 11.37 29.12 77.58 204.1
Gauss 0.1871 1.547 4.405 12.34 35.41 97.99 279.7 811.0

Ratio 1.954 2.380 2.622 2.886 3.114 3.365 3.605 3.974

Ratio / log2(n) 0.279 0.298 0.308 0.321 0.328 0.337 0.343 0.361

Table 1: Experiment 1— Optimal Choices of k, and running time in seconds, using Opt 0.

k 1,024 1,536 2,048 3,072 4,096 6,144 8,192 12,288 16384

5 870 2,750 6,290 20,510 47,590 —* —* —* –
6 760 2,340 5,420 17,540 40,630 132,950 —* 1,033,420 –
7 710 2,130 4,850 15,480 35,540 116,300 —* 903,200 –
8 680 2,040 4,550 14,320 32,620 104,960 242,990 798,470 –
9 740 2,100 4,550 13,860 30,990 97,830 223,270 737,990 1,703,290

10 880 2,360 4,980 14,330 31,130 95,850 215,080 690,580 1,595,340
11 1,170 2,970 5,940 16,260 34,020 99,980 218,320 680,310 1,528,900
12 1,740 4,170 7,970 20,470 41,020 113,270 238,160 708,640 1,557,020
13 2,750 6,410 11,890 29,210 55,970 147,190 295,120 817,950 1,716,990
14 4,780 10,790 19,390 45,610 84,580 208,300 399,810 1,045,430 –
15 8,390 18,760 33,690 77,460 140,640 335,710 623,450 1,529,740 –
16 15,290 34,340 60,570 137,360 246,010 569,740 1,034,690 2,440,410 –
*Indicates that too many aborts occurred due to singular submatrices.

Table 2: Experiment 3: Running times, in msec, Optimization Level 0

error of k 1,024 1,536 2,048 4,096 6,144 8,192 12,288 16384

-4 — — 48.0% 53.6% 38.7% – 32.8% —
-3 27.9% 34.8% 26.6% 31.1% 21.3% – 17.4% —

-2 11.8% 14.7% 11.7% 14.7% 9.5% 13.0% 8.5% 11.4%
-1 4.4% 4.4% 3.3% 5.3% 2.1% 3.8% 1.5% 4.3%

Exact 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

+1 8.8% 2.9% 3.4% 0.5% 4.3% 1.5% 4.2% 1.8%
+2 29.4% 15.7% 17.3% 9.8% 18.2% 10.7% 20.2% 12.3%

+3 72.1% 45.6% 47.7% 32.4% 53.6% 37.2% 53.7% —
+4 155.9% 104.4% 110.8% 80.6% 117.3% 85.9% 124.9% —

+5 304.4% 214.2% 229.1% 172.9% 250.2% 189.9% 258.7% —
+6 602.9% 428.9% 458.9% 353.8% 494.4% 381.1% — —

Table 3: Percentage Error for Offset of K, From Experiment 3
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Dimension 4,000 8,000 12,000 16,000 20,000 24,000 28,000 32,000

Gaussian 19.00 138.34 444.53 1033.50 2022.29 3459.77 5366.62 8061.90

7 7.64 – – – – – – –
8 7.09 51.78 – – – – – –
9 6.90 48.83 159.69 364.74 698.67 1195.78 – –
10 7.05 47.31 151.65 342.75 651.63 1107.17 1740.58 2635.64
11 7.67 48.08 149.46 332.37 622.86 1051.25 1640.63 2476.58
12 – 52.55 155.51 336.11 620.35 1032.38 1597.98 2397.45
13 – – 175.47 364.22 655.40 1073.45 1640.45 2432.18
14 – – – – – – 1822.93 2657.26

Min 6.90 47.31 149.46 332.37 620.35 1032.38 1597.98 2397.45

Gauss/M4RI Ratio 2.75 2.92 2.97 3.11 3.26 3.35 3.36 3.36

Ratio / log2 n 0.230 0.225 0.219 0.222 0.228 0.230 0.227 0.225

Table 4: Experiment 4: Optimization Level 3, Flexible k

Computer I Computer II Computer III
Dimension Magma M4RI Magma M4RI Magma M4RI

10,000 × 10,000 2.693 1.451 3.283 2.509 8.069 3.418
16,384 × 16,384 8.476 6.500 11.204 10.741 25.828 19.987
20,000 × 20,000 14.417 11.566 16.911 19.776 43.256 30.829
32,000 × 32,000 45.739 40.450 57.761 86.071 157.134 118.121
64,000 × 64,000 286.716 291.252 355.477 640.742 892.481 874.609

Table 5: Experiment 5: Comparison between Latest Code and Magma
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